Hamiltonian Noether theorem for gauge systems and two time physics
نویسندگان
چکیده
The Noether theorem for Hamiltonian constrained systems is revisited. In particular, our review presents a novel method to show that the gauge transformations are generated by the conserved quantities associated with the first class constraints. We apply our results to the relativistic point particle, to the Friedberg et al. model and, with special emphasis, to two time physics.
منابع مشابه
A pr 2 00 5 Hamiltonian Noether theorem for gauge systems and two time physics
The Noether theorem for Hamiltonian constrained systems is revisited. In particular, our review presents a novel method to show that the gauge transformations are generated by the conserved quantities associated with the first class constraints. We apply our results to the relativistic point particle, to the Friedberg et al. model and, with special emphasis, to two time physics.
متن کاملar X iv : h ep - t h / 05 03 09 3 v 3 2 5 A pr 2 00 5 Hamiltonian Noether theorem for gauge systems and two time physics
The Noether theorem for Hamiltonian constrained systems is revisited. In particular, our review presents a novel method to show that the gauge transformations are generated by the conserved quantities associated with the first class constraints. We apply our results to the relativistic point particle, to the Friedberg et al. model and, with special emphasis, to two time physics.
متن کاملNoether Symmetries and Integrability in Time-dependent Hamiltonian Mechanics
We consider Noether symmetries within Hamiltonian setting as transformations that preserve Poincaré–Cartan form, i.e., as symmetries of characteristic line bundles of nondegenerate 1-forms. In the case when the Poincaré–Cartan form is contact, the explicit expression for the symmetries in the inverse Noether theorem is given. As examples, we consider natural mechanical systems, in particular th...
متن کاملHamiltonian analysis of interacting fluids
Ideal fluid dynamics is studied as a relativistic field theory with particular stress on its hamiltonian structure. The Schwinger condition, whose integrated version yields the stress tensor conservation, is explicitly verified both in equal-time and light-cone coordinate systems. We also consider the hamiltonian formulation of fluids interacting with an external gauge field. The complementary ...
متن کاملConserved Noether Currents, Utiyama’s Theory of Invariant Variation, and Velocity Dependence in Local Gauge Invariance
The paper discusses the mathematical consequences of the application of derived variables in gauge fields. Physics is aware of several phenomena, which depend first of all on velocities (like e.g., the force caused by charges moving in a magnetic field, or the Lorentz transformation). Applying the property of the second Noether theorem, that allowed generalised variables, this paper extends the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005